
SDSS and SRCC Computing
Resources

Mark R. Yoder, Ph.D.
19 April 2023

1

Overview

Scope: Introductory, review of resources, basic HPC-foo

• Summary of Research Computing resources
• Documentation
• Basic HPC concepts
• SLURM Tips (especially in the Sherlock environment)
• Filesystems, inodes, and best practices

2

Organizations and acronyms:

• Stanford Doerr School of Sustainability (SDSS)
• SDSS-CC: SDSS Center for Computing (formerly known as CEES)

SDSS-CC provides a variety of high performance computing (HPC) resources to support the SDSS
research community

• SRCC: Stanford Research Computing Center
SRCC provides HPC and other research computing support via a number of platforms, including
the Sherlock HPC and Oak LUSTRE storage platforms. SRCC also provides Carina OnPrem and
Cloud based resources for high risk data, Cloud computing consultation, and a variety of other
services related to research computing. Recently, SDSS-CFC has partnered with SERC to provide
expanded and enhanced computing resources to SE3 research teams.

3

Stanford Research Computing (SRCC)
“Your laptop is not for computing.”

• “The Stanford Research Computing Center (SRCC) is a joint effort of
the Dean of Research and University IT to build and support a
comprehensive program to advance research at Stanford.”
• Provides and manages a wide range of services and facilities
• Sherlock (general purpose), Carina (high risk), Farmshare (education) HPC
• Cloud resources and consulting
• The HIVE visualization facility
• Compute consulting services
• Grant and CDMP writing assistance

• If it’s about “research” and ”computing”, ask…

4

SDSS-CC Resources

• Sherlock serc partition (9040 CPUs, 88 v/a100 GPUs, up to 1 TB RAM, 128
CPUs)
• 200 SH3-CBASE (AMD, 32 cores, 256GB RAM)
• 8 SH3-CPERF (AMD, 128 cores, 1TB RAM)
• 10 SH3-G86F64 (AMD, 128 cores, 8 x A100 GPU (6x40 GB, 4x80 GB), 1TB RAM)
• 12 SH2 base (Intel Skylake, 24 cores, 384 GB RAM)
• 2 SH2 GPU (Intel Skylake, 24 cores, 4 x V100 GPU)
• 1.35+PB Oak storage

• Sherlock Public partitions: normal, dev, bigmem, gpu, owners
• GCP

• Excess capacity
• Non-standard configuration projects, data gateways, etc.
• Multi-institution collaborations

• Public HPC (ACCESS, National Labs, etc.)
5

SDSS-CC Resources: Sherlock

*** Please limit SERC jobs to 300 - 500 total concurrent CPUs! ***
• Request accounts: srcc-support@stanford.edu
• Primary compute platform for most users
• Single large, serc partition shared by most SDSS users; some PIs may

also have private/group partitions
• Please be considerate to your friends and colleagues when queueing

jobs.
• Please restrict big, long-running jobs to ~300 CPUs
• For lots of smaller, short running jobs, ~500 CPUs
• For larger jobs or other questions, stop into Sh. Office Hors

• New workflows should probably start here
6

mailto:srcc-support@stanford.edu

SDSS-CC Resources: Oak

• 1.35+ PB storage
• LUSTRE “Cheep and deep” storage
• Optimized for large volume and speed
• Performs poorly for lots of small files, so please tar, zip, or otherwise

consolidate small files into HDF5 (or something)
• Some additional setup
• /oak/stanford/schools/ees/{PI_SUNETID}
• GCP:
• Special cases; talk to Bob or Mark

7

SDSS-CC Resources: GCP

• Special cases, unique configurations, etc.
• Excess compute capacity
• Data gateways, crowd-sourcing projects
• Multi-institution collaborations
• Cloud based data sharing

8

SDSS-CC Resources: ACCESS, etc.

• We hope to increase our usage of National Labs, NSF, NASA, NOAA,
etc. compute resources
• Free!
• Sometimes, agencies want you to use their platform
• Can be a great way to run a ton of well defined jobs

• ACCESS (NSF) is especially easy to get small to medium size allocations
• SDSS-CC and SRC can help with proposals (for large allocations),

renewal requests, etc.
• Resource justification, scaling analysis, etc.

9

SDSS-CC and SRCC: Other stuff too

• RC Technical support and consultations
• Sherlock Office Hours (Tu: 10:00, Th:3:00)
• By appointment

• OnBoardings (first Wednesday of the Month, 1:00)
• Grant writing support
• Code and Data Management Plan (CDMP)
• Compute resources planning and budget

10

Documentation, support

• The Google
• SDSS-CC Documentation: GitHub Pages

• https://stanford-rc.github.io/docs-earth/
• ** will be moving to something like sdsscc-docs.stanford.edu, so standby…

• Sherlock Documentation:
• https://www.sherlock.stanford.edu/docs/overview/introduction/

• NOTE: These docs are searchable!
• NOTE Also: You can Google for these docs, eg “Stanford Sherlock docs”
• Occasional OnBoarding, Basic HPC, and other classes provided by SRCC
• Support requests:

• CEES Slack channel
• srcc-support@Stanford.edu

11

https://stanford-rc.github.io/docs-earth/
https://www.sherlock.stanford.edu/docs/overview/introduction/
mailto:srcc-support@Stanford.edu

HPC Basics

• What is HPC?
• Basic architecture of HPC
• Nomenclature
• Connecting: ssh, Open on Demand (OoD)
• Running Jobs: Batch, Interactive OoD
• SLURM-foo
• Software on HPC (general), Sherlock
• Filesystems

12

HPC Basics: What is HPC?
• High Performance Computing
• HPC is a bunch of computers:

• Connected by high speed network
• Sharing high speed filesystem(s)
• And some management nodes

• Users access the login API/machines
• Request resources, to run jobs, via a

Job Scheduler
• Scheduler and management nodes

push compute jobs to the compute
machines/nodes

13

ln01 ln02 ln03 ln0n…

fs01

fs01

…

fs0n

cn01

cn10cn09

cn13 cn14 cnN

cn07

cn03

cn08

cn04

cn06

cn02

cn05

…

… …

ssh sherlock.Stanford.edu

Jobs…

Management Nodes

The unfortunate state of HPC nomenclature:
What, exactly, is a “node”?

• The current state of HPC
nomenclature is…
unfortunate. In SLURM:
• “Node”: A machine; a

server; a “computer”
• “Socket”: A traditional

“CPU” device.
• Each “socket” or CPU will

have many “cores” or CPUs.

14

Local
Scratch

Memory
(RAM)

Node, machine, or Server

“Socket” or CPU

“Core” or CPU

HPC Scale: How big is a node?

• Sherlock 3.0 CBASE (standard) Node:
• 1 socket x 32 cores/socket: 32 compute cores (or cpus)
• 256 GB RAM (8 GB/core or cpu)

• Sherlock 3.0 CPERF (performance) Node:
• 2 sockets x 64 cores/socket: 128 cpus
• 1TB RAM (8GB/cpu)

• ~1 or 2 TB local storage ($LSCRATCH)
• Most filesystems are mounted from designated FS servers.
• As a point of reference:
• Your laptop (probably): 1 socket, 2-6 CPUs/cores, 16-32 GB RAM.
• Many NSF HPCs are similar to Sherlock CPERF, except ~2GB/core

15

Connecting to Sherlock (also see docs)

• Connect:
• Terminal or *nix CLI:

• $ ssh sherlock.stanford.edu
• To port graphics $ssh –XY sherlock.stanford.edu

• Homepage:
https://www.sherlock.stanford.edu
• OnDemand:

https://login.sherlock.stanford.edu/
• 2-factor authentication required
• Data transfer nodes:

• dtn.sherlock.stanford.edu
• oak-dtn.stanford.edu

16

https://www.sherlock.stanford.edu/
https://login.sherlock.stanford.edu/

OnDemand and Web UI
login.sherlock.Stanford.edu

• Shell (terminal CLI)
• Upload files to

Sherlock
• OnDemand

applications
• Good for Windows

users

17

HPC Basics: Login nodes

• Login nodes are NOT for computing!
• Connect to HPC, request resources, pass

jobs to compute nodes.
• Simple, light weight tasks:

• Moderate file copy
• Simple code compiles
• Very small, lightweight test runs

• Since we own nodes, there are few good
reasons to run jobs on LN.

• Over-subscribed (shared and busy)
• Quota managers will kill jobs
• Restarted frequently and without warning
• Generally, not a reliable test platform

18

ln01 ln02 ln03 ln0n…

fs01

fs01

…

fs0n

cn01

cn10cn09

cn13 cn14 cnN

cn07

cn03

cn08

cn04

cn06

cn02

cn05

…

… …

ssh sherlock.Stanford.edu

Jobs…

“r
es

ou
rc

es
”

HPC Basics: Interactive jobs

• Work in real-time
• Like on the login node or on your laptop
• But on a compute node

• Command line/shell, jupyter notebook,
R-studio, MatLab, etc.
• Connect to login node, then request

resources:
• srun –pty –partition=serc,normal bash
• salloc –partition=serc,normal

• (You may then need to ssh to allocation)

• Must keep session connected
• (You can use screen to maintain background

tasks, but they can be reset)
19

19

ln01 ln02 ln03 ln0n…

fs01

fs01

…

fs0n

cn01

cn10cn09

cn13 cn14 cnN

cn07

cn03

cn08

cn04

cn06

cn02

cn05

…

… …

Jobs…

“r
es

ou
rc

es
”

Running Jobs on Sherlock: Interactive

• Request resources (ie, you can’t just log in and run stuff)
• Interactive shell sessions:
• $ sdev –p serc
• $ srun –pty –partition=serc {other SLURM directives} bash
• $ saloc –partition=serc {other SLURM directives}
• Note: srun bash and saloc are usually interchangeable

• Jupyter notebooks, R-Studio, MatLab from shell sessions or
OnDemand (see docs)
• Sherlock OnDemand:
• Connect: https://login.sherlock.stanford.edu/
• Docs: https://www.sherlock.stanford.edu/docs/user-guide/ondemand/

20

https://login.sherlock.stanford.edu/
https://www.sherlock.stanford.edu/docs/user-guide/ondemand/

HPC Basics: Batch jobs

• Preferred modus operandi for HPC!
• Submit job script to scheduler
• Scheduler will find and allocate

resources, then run the job when
resources are available
• Runs independently on compute

nodes
• Job std.out and std.err output to file(s)
• Steeper learning curve, but very

rewarding.
• Best for big, resource intensive jobs

22

22

ln01 ln02 ln0n…

fs01

fs01

…

fs0n

cn01

cn10cn09

cn13 cn14 cnN

cn07

cn03

cn08

cn04

cn06

cn02

cn05

…

… …

to Job scheduler

“r
es

ou
rc

es
”

ln03

Sherlock Partitions

• Partitions are groups of machines, designated a specific purpose or specific users, with distinct
access rules.

• serc partition is shared by all SDSS users
• PI partitions: Some PIs have private partitions on Sherlock
• Public partitions:

• normal: Default partition; heavily subscribed
• dev: Restricted to interactive sessions.
• bigmem, gpu: large memory (4TB) and (public) GPU nodes

• owners:
• Virtual partition consists of all unassigned resources, available to all owners.
• Jobs in owners will be preempted (killed) with a 30 second warning signal

• Good for short jobs, Monte Carlo type jobs, well checkpointed tasks
• At last assessment, preemption rate was about 2-3%, more or less time-independent

• $OAK storage:
• /oak/stanford/schools/ees/{pi_sunet}
• /oak/stanford/groups/{pi_sunet}

23

Exercise 1: Interactive and batched jobs

1. Log in to Sherlock
2. Start an interactive session
3. Write the simplest Batch script
4. Execute the script as a test
5. Submit the script the scheduler
6. Review the output
7. Review job performance
NOTE: It will be up to the reader, as an additional exercise, to identify minor
discrepancies, and assess their significance, in the instructions and the shown
examples.

24

Exercise 1, Step 1: Log in and get session

• Log in (preferably via CLI terminal, for expediency)
• Get an interactive session. Either:
• srun –pty –partition=serc –mem-per-cpu=4g –time=01:00:00 bash
• salloc –partition=serc –mem-per-cpu=4g –time=01:00:00 bash

25

(base) [myoder96@sh02-ln04 login ~/toy_job]$ srun --pty --partition=serc
--mem-per-cpu=4g --time=01:00:00 bash

srun: job 16715027 queued and waiting for resources
srun: job 16715027 has been allocated resources

(base) [myoder96@sh03-09n67 ~/toy_job] (job 16715027) $

Exercise 1, Step 2: Set up a working directory

• $ mkdir test_job
• $ cd test_job
• $ vim test_job.sh

26

Exercise 1, Step 3: Write your test script

27

Exercise 1, Step 4: Execute toy_script.sh

(base) [myoder96@sh02-ln04 login ~/toy_job]$ chmod +x toy_job.sh
(base) [myoder96@sh02-ln04 login ~/toy_job]$./toy_job.sh
The following modules were not unloaded:
(Use "module --force purge" to unload all):

1) devel 2) math
“running a job for myoder96 on on machine: sh02-ln04.stanford.edu”
(base) [myoder96@sh02-ln04 login ~/toy_job]$

29

Exercise 1, Step 5: Success! Now batch script
(base) [myoder96@sh03-09n67 ~/toy_job] (job 16715027) $ sbatch --
time=00:05:00 --partition=serc,normal --output=toy_job_%j.out
toy_job.sh
Submitted batch job 16715319
(base) [myoder96@sh03-09n67 ~/toy_job] (job 16715027) $ squeue -u
$USER

30

Exercise 1, Step 7: Monitor your job
• Use `squeue –u $USER` to view your jobs

• From a Sherlock session, ssh to that node (ssh sh03-08n51)
• Use `ps` or `htop` to monitor activity

31

Exercise 1, Step 7: Review output

(base) [myoder96@sh03-09n67 ~/toy_job] (job 16715027) $ cat
toy_job_16715319.out
“running a job for myoder96 on 1 on machine: sh03-09n72.int”

(base) [myoder96@sh03-09n67 ~/toy_job] (job 16715027) $ cat toy_job.err
The following modules were not unloaded:

(Use "module --force purge" to unload all):

1) devel 2) math
(base) [myoder96@sh03-09n67 ~/toy_job] (job 16715027) $

32

Exercise 1, Step 8: Review job performance
• Slurm Accounting, `sacct` records various data about your job
• https://slurm.schedmd.com/sacct.html
• Use --format= option to specify fields of interest
• Eg: cpu_efficiency=totalCPU/(allocCPUs*elapsed)

33

https://slurm.schedmd.com/sacct.html

Some SLURM Basics

• --ntasks: Parallelization between nodes; independent instances of an
app, nominally that communicate via something like MPI
• --cpus-per-{something}: Like it sounds. Note that some of these

directives can conflict with one another.
• -- mem: memory per node
• -- mem-per-{node, cpu, gpu}: Determine the memory bottleneck and

request memory to scale with that element
• NOTE: Default memory units are MB. Ask for GB (gp, g, G, etc. should

all work, depending on SLURM configuration)
• --mem-per-cpu=8g

34

--ntasks vs –cpus-per-task
(base) [myoder96@sh02-ln01 login ~]$ srun -p serc --ntasks=4 --nodes=4
hostname
srun: job 16812329 queued and waiting for resources
srun: job 16812329 has been allocated resources
sh03-09n67.int
sh03-09n53.int
sh03-09n57.int
sh03-09n64.int
(base) [myoder96@sh02-ln01 login ~]$ srun -p serc --ntasks=1 --cpus-per-
task=4 hostname
srun: job 16812419 queued and waiting for resources
srun: job 16812419 has been allocated resources
sh03-09n28.int
(base) [myoder96@sh02-ln01 login ~]$

35

SLURM Requests: Hardware constraints
(https://slurm.schedmd.com/sbatch.html)

• SERC partition includes multiple node configurations and HW architectures
• HW optimized codes, MPI programs, etc. should make HW specific requests

using –constraint= directive(s)
• To show available constraints:

• $ sh_node_feat
• Examples:

• $ sbatch –partition=serc ntasks={n} –constraint=CLASS:SH3_CBASE my_mpi_job.sh
• $ sbatch –partition=serc ntasks={n} –

constraint=“[CLASS:SH3_CBASE|CLASS:SH3_CBASE.1|CLASS:SH3_CPERF]”
• my_mpi_job.sh
• $ sbatch –partition=serc ntasks={n} –constraint=CPU_MNF:AMD my_amd_job.sh

36

https://slurm.schedmd.com/sbatch.html

SERC Node features: --constraint=
(base) [myoder96@sh02-ln01 login ~]$
sh_node_feat -p serc
CLASS:SH3_CBASE
CLASS:SH3_CBASE.1
CLASS:SH3_CPERF
CLASS:SH3_G8TF64
CLASS:SH3_G8TF64.1
CPU_FRQ:2.00GHz
CPU_FRQ:2.25GHz
CPU_FRQ:2.30GHz
CPU_FRQ:2.45GHz
CPU_FRQ:2.50GHz
CPU_FRQ:2.75GHz
CPU_GEN:MLN
CPU_GEN:RME

37

...
CPU_GEN:SKX
CPU_MNF:AMD
CPU_MNF:INTEL
CPU_SKU:5118
CPU_SKU:7502
CPU_SKU:7543
CPU_SKU:7662
CPU_SKU:7742
CPU_SKU:7763
GPU_BRD:TESLA
GPU_CC:7.0
GPU_CC:8.0

GPU_GEN:AMP
GPU_CC:7.0
GPU_CC:8.0
GPU_GEN:AMP
GPU_GEN:VLT
GPU_MEM:32GB
GPU_MEM:40GB
GPU_MEM:80GB
GPU_SKU:A100_SXM4
GPU_SKU:V100_PCIE
IB:EDR
IB:HDR
NO_GPU

SLURM Requests: Be specific

• Ask for what you want and how how you need it
• Be specific about memory, time, and core/node configuration. Will

your request scale?
• -- time=HH:MM:SS
• --mem-per-cpu, --mem-per-gpu, --mem-per-node (ie, --mem), etc.
• --cpus-per-gpu

• How does your program use memory and CPUs?
• Default time for interactive sessions is 2 hours
• SBATCH docs: https://slurm.schedmd.com/sbatch.html

38

https://slurm.schedmd.com/sbatch.html

SLURM Examples (incomplete) for a 128 core
job
• MPI program, parallelizes well by messaging; get resources as quickly

as possible:
• -- ntasks=128 –constraint=“[CLASS:SH3_CBASE | CLASS:SH3_CPERF]”

• Runs via MPI (no OMP), but benefits fewer nodes:
• -- ntasks=128 –cpus-per-task=1 –constraint=“[CLASS:SH3_CBASE |

CLASS:SH3_CBASE.1 | CLASS:SH3_CPERF]” –nodes=2-8
• Benefits well from OMP (threads) parallelization:
• --ntasks=4 –cpus-per-task=32 –constraint=“[CLASS:SH3_CBASE |

CLASS:SH3_CBASE.1 | CLASS:SH3_CPERF]”
• No MPI but good OMP (or other threaded) parallelization
• --ntasks=1 –cpus-per-task=128 –constraint=CLASS:SH3_CPERF

39

More SLURM directive examples…

• Python job, using `multiprocessing`:
• NOTE: This job is probably not HW sensitive, so consider framing it to use any

serc hardware
• --ntasks=1 –cpus-per-task=24

• Most GPU jobs will run on one node, as a single task.
• Sherlock has a public gpu partition, but our GPUs are in serc
• --partition=serc –ntasks=1 –gpus=1 –cpus-per-gpu=8 –mem-per-cpu=8g
• NOTE: serc GPUs are 128 cores, 8 GPU (16 cpus/gpu) and 8GB/core, so this

example is an under-ask.

40

Jupyter Notebooks

• Yes, you can run Jupyter Notebooks on Sherlock!
• Option 1: ssh and port forwarding (see documentation)
• Option 2: Sherlock OnDemand
• Web based GUI interface
• Connect: https://login.sherlock.stanford.edu/
• Docs: https://www.sherlock.stanford.edu/docs/user-guide/ondemand/
• OnDemand has come a LONG way – both on Sherlock and in general, in the

past few years, further improvement is expected.

41

https://login.sherlock.stanford.edu/
https://www.sherlock.stanford.edu/docs/user-guide/ondemand/

Jupyter noteboks…

• OnDemand will help you
define SLURM directives…
• Test your module list in a

terminal

42

Software on Sherlock

• Sherlock SW stack and modules
• Uses LMOD
• Available Modules: module spider {something} or module avail

• Custom compiles:
• $GROUP_HOME is usually the best place

• SDSS and Custom builds:
• Some corner-case or custom built SW modules are available via:
/home/groups/s-ees/share/cees/modules/modulefiles
• If standard Sherlock SW is not working for you, put in a ticket and we’ll figure

out something.

43

Compiling SW on Sherlock

• Root access:
• No, you do not have root access.
• No, you cannot have root access. Please do not ask.

• Yes, you can still install most SW.
• Set installation directory with –prefix or –DCMAKE_INSTALL_PREFIX
• Choose your compiler!
• The default compiler for CentOS-7 is gcc@4.8.5
• module load gcc/12.1.0
• module load gcc/10.1.0

44

Spack: Almost Magic!

• Spack is a dependency manager, SW installation platform
• Mostly out of LLNL
• LOTS of scientific computing SW already packaged up
• Also good for building environments with complex dependencies,

then compile your obscure, but necessary, code
• Good starting place for containers

45

Containers

• Basically, a sandboxed disk space that contains all the libraries a given
piece of SW needs to run
• Docker is the standard.
• No, we do not have docker
• Requires root to build and run containers

• We have Singularity – Docker’s OpenSource knock-off.
• Requires root to build, so containers cannot be built on of Sherlock

• Next gen OS should include AppTainer, which will allow users to build
containers – without root!

46

Sherlock Filesystems: Flavors, limits, quotas
https://www.sherlock.stanford.edu/docs/storage/overview/#quotas-and-limits

• Use: $ sh_quota
• $HOME (15 GB): Small, backed up

• /home/users/{SUNetID}
• Small data files, small SW builds, your personal space

• $GROUP_HOME (1TB): Bigger! Backed up.
• /home/groups/{pi SUNetID}
• Shared data, specialized SW builds. Secure for your group.

• $SCRATCH, $GROUP_SCRATCH (100 TB each): FAST! Temporary
• /scratch/users/{SUNetID}
• /scratch/groups{PI SUNetID}
• Fast. Temporary (90 day rolling purge). When feasible, do your IO here.

• $L_SCRATCH: Local (on-node) scratch; not shared. Very temporary
• $OAK 1 + PB): Storage

• /oak/stanford/schools/ees/{PI SUNetID}
• /oak/stanford/groups/{PI SUNetID} (if your PI has a group space)
• Most of your data will go here
• Shared containers and some SW

47

https://www.sherlock.stanford.edu/docs/storage/overview/

Summary

• Lots of compute resources in Sherlock!
• Understand your jobs and resource requirements; ask for what you need!
• Please do not run jobs you do not understand!
• Sherlock access and support:

• srcc-support@Stanford.edu
• SDSS-CC Docs: https://stanford-rc.github.io/docs-earth/
• Sherlock Docs: https://www.sherlock.stanford.edu/docs/overview/introduction/
• $ ssh sherlock.stanford.edu
• Use batch and interactive jobs
• Juypter Notebooks: Sherlock OnDemand, ssh-forwarding

48

mailto:srcc-support@Stanford.edu
https://stanford-rc.github.io/docs-earth/
https://www.sherlock.stanford.edu/docs/overview/introduction/

